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Williston Basin of North Dakota was at the forefront of tight oil
extraction but now faces economic uncertainty
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Rising rig and well productivity suggest greater resilience than
expected
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Improvement of well productivity has been driven in part by
changes in well and stimulation design

Trends toward longer wells and larger
stimulations (hydraulic fracturing)

Motivation for identifying impact:
1. Forecast well productivity based on
anticipated changes

10

s

Increase in proppant (sand) per well over time

== Mean within quarter
-- OLS trend-line of data

. e = b
2. Optimize wells s o | L
;g- T AOeee E E - @
.| sEEEERREaT
© | | I I ! ! I | | | | | | |
2012 2013 2014 2015
. B B Massachusetts Py Earth
MIT Earth Resources Laboratory Slide 4 I I I I I Institute of == Resources
2017 Annual Founding Members Meeting Technology 2 Laboratory



Another important dynamic is where wells are being drilled —

“sweet-spotting” or “high-grading”

- Activity continuing to cluster in high
productivity areas

- Motivation for identifying location influence:
1. Need to control for this to accurately
understand impact of design changes
2. Assess well portfolios and resource
economics based on location in field

Well productivity heat map
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How much of the improvement in well productivity is due to
technology (design changes) vs location (sweet spotting)?

- Big public datasets available (Frac Focus, North Dakota Mineral Resources)
- Can we use econometrics/machine learning to understand and make predictions?

Technology
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Current regression models to understand the influence of technology

on productivity

- Nonspatial linear regression (NS)

- Fixed Effects (FE), such as county-level used by EIA

- Issues:
- Not spatially granular enough

- Residuals are spatially autocorrelated

-  Omitted variable bias
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Regression-kriging provides an appropriate tool for distinguishing
between impact of location and technology
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RK improves accuracy (in 10-fold cross validation) compared to
currently used regression models
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Existing regression models overestimate the role of technology
relative to location
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Overestimating the impact of technology leads to overoptimistic
forecasts and poor design choices for wells

Forecasts for 2018 designs
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Future work

- Apply to other
unconventional fields

- Predict decline rates

- Use to develop improved
field-scale economic models

BAKKEN BREAKEVEN CALCULATOR

RESULTS

Qil price [WTI bbl] Probability*
$86.26 90%
$56.31 75%
54543 50%
$38.02 25%
$32.86 10%

*location will break even at this price
INPV>=(]

ECONOMIC PARAMETERS

Cost of capital
Equity captial cost:  10.25% E]
Debt captial cost 525% H

Share of debt: 30% B
WACC*: 8199 %
*Weighted average cost of capital
Royalty/Taxes
Royalty: 18% B
Lease bonus: $3000/acre

J Half-cycle cost B

=

Fox Lake
Richey g

Bloomfieldo  oRed Top

Rananiinl h
Map Satellite
4] Minton Lake Alma
Big Beaver °
S
Whitetail Outlook
b o
tbey Plentywood
Dagmar
T Medicine Lake
PECK °
ATION Froid
S
Brockton {77 Culbertson
D Poplar P @ s

HOMEPAGE USER MANUAL

Alida
Oxtgow
Camduff
Estevan = L1e B}
° o
Bienfait |
) D —
|
v
Bowbells.
” Mohall
Kenmare
]

Makoti

Z8P Beulah oHazen

&

Glenburn

@ Mlnool AFB

Berthold
o

Burlington®. inot
sun

G

Max

Garrison

MIT Earth Resources Laboratory
2017 Annual Founding Members Meeting

Slide 12

H Bl Massachusetts

Institute of
Technology

—
——
_—

Earth
Resources
Laboratory



Thank you! Questions?

- Thank you to MIT Energy Initiative for supporting this research

- Full paper is:
Montgomery, J. B., & O’Sullivan, F. M. (2017). Spatial variability of tight oil well
productivity and the impact of technology. Applied Energy, 195, 344-355.

MIT Earth Resources Laboratory Slide 13 I I I T8 m:tsif:t‘;hg? ot VI:-,:.. Ezgtc';u rces
2017 Annual Founding Members Meeting I I Technology e Laboratory



US tight oil production growth has demonstrated the potential of shale and
other unconventional formations — Combined output from three of the main US
plays alone is now equivalent to the total output of China or Canada

lllustration of crude oil production growth from some select major U.S.

unconventional oil plays since 2005
MMbbls of oil per day
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Some other approaches that have been used to control for
location

Fixed effects — county or Surface trend analysis
township level (productivity fit to
polynomial of coordinates)
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Results of regression kriging — Productivity forecast with typical well
designs for 2018
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Each model provides a good fit to the mean productivity over time
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Training only with data from early wells shows that mean production can be
reliably forecasted based on changes in location and technology
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These models are useful for forecasting production and economics of future
wells — Important differences between RK and existing approaches such as FE become

clear

Mean new-well first year prod. (Mbbl)
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Differences in impact attributed to different parameters
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Location is important because key geological controls on production vary
spatially across basin

— Spatial trends and patterns result from physical processes over long lengths of time

— Ocecur at various scales (e.g. macro: formation thickness, grain size/porosity, thermal
maturity; micro: natural fractures)

— Geological controls may be poorly understood or hard to quantify

River water and silt

—
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Amount of proppant has been increasing over time and is correlated
with productivity
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Definition of models:

Multiple linear regression
model:

Ordinary least squares:

Multiple linear regression
model with variance-
covariance matrix:

Generalized least squares:

B=XTo'x)'xTa ly

26




NS FE STA SEM RK
Form Y=XpB+e Y =Xp3B+e€ Y=XB+¢€ V= V=
XB+pWe+u XB+Ae+u
Technology Lateral Lateral Lateral length, Lateral length, Lateral length,
variables in X length, length, water volume, water volume, water volume,
water water proppant mass proppant mass proppant mass
volume, volume,
proppant proppant
mass mass
Additional N/A County Second order Second order Second order
variables in X indicators, polynomial of polynomial of polynomial of
to control for formation coordinates, coordinates, coordinates,
location indicator formation formation formation
indicator indicator indicator
Fitted N/A N/A N/A p 2, 0%, ¢
parameters to
control for
spatial
autocorrelation
Decay of N/A N/A N/A Inverse distance Exponential
spatial weighting, first
autocorrelation 50 neighbors
assumed only
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Table 1: Summary of the regression models used.




One approach to estimating the effect of technology on productivity is linear regression with ordinary
least squares — Omitted-variable bias is a problem though

17 Technology
Productivity ——p Y — X 8 _|_ €

Geological controls (omitted variable)

More realistically: Y — X,B _|_ ZH + €

Bias of Estimate: B pm— (XTX) 1XTY
= (XTX) " 'XT(XB+ 20 + ¢)

E[BIX] = B8+ (XTX) E[XTZ|X]
\ J

!
0 #0
cov(X,Z) # 0

Bias is introduced if:
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Evaluating the models

Moran’s | to measure spatial n Zi Ej Wi (E i — € ) (f j
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Mean spatial weight

Comparison of models:

NS FE STA SEM RK
Time to run (s) 0.0041 0.00804 0.00828 3.7 478.54
MASE 0.938 0.871 0.815 0.662 0.532
10-fold CV MASE  0.938 0.873 0.816 0.669 0.62
Moran’s I (W) 0.512 0.443 0.403  -0.00895 -2.26E-04
Moran’s T () 0.548 0.482 0.444 0.245 0.102

Table 2: Comparison of performance for the regression models. Moran’s I was calculated with both the inverse distance
weighted matrix W and the kriging weights matrix A.

Spatial weights matrix W: Coefficient estimates:
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Comparison of models’ estimates of technology and location driven improvement in productivity
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