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Multiphysics

Poro(visco-)elasticity, (quasi-)static and dynamic processes.
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Multi(temporal-)scale

Implicitly solving the (quasi-)static equation, although
expensive, one can take long time step hours, days . . .
U = K�1F
Explicitly solving the dynamic equation, although cheap,
one has to take short time step (CFL condition).
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Multi(spatial-)scale

FE
FD

PML

absorbing

ground or ocean bottom

High order explicit FE methods (SEM, DG) suffer strict CFL
condition, and do not solve (quasi-)static equations.
Linear FE can solve both the static and dynamic equations,
but suffers strict CFL condition, i.e. expensive for field
scale ground motions.
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Why a new code?
https://github.com/Chunfang/defmod-swpc

this Pylith SPECFEM Seissol Comsol
method FE-FD FE SEM DG FE
static X X X

dynamic X X X X X
hybrid X ?

poroelastic X ? X
multiscale X

open X X X X

https://github.com/Chunfang/defmod-swpc
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Pore pressure stabilization

Smith and Griffiths (1982) provide the FE formulation for
poroelasticity. Bochev and Dohrmann (2006) provide a pore
pressure stabilization method.

For Maxwell power law viscoelasticity, the deformation has
affect on both the stiffness matrix K and the RHS function F,
Melosh and Raefsky (1980).
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Fault constrain equations
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� is a fault stress proxy.
Constraint I can be solved
for dynamic rupture.

Bartolomeo et al. (2010) provide an explicit routine to model
the fault constraint in 2D. Defmod (Meng 2016) has made the
method for 3D and general constitutive laws.
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Implicit explicit hybrid solver
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FE-FD direct binding
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Splay fault rupture
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Dipping and curved fault

reservoir depletion
induced rupture, 
curved fault.
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Summary
This work has resulted a multipysics and multiscale
earthquake simulation tool, defmod-swpc.
Temporally, it covers both the (quasi-)static and dynamic
processes.
Spatially, it covers both the near source/fault motions and
far field ground motions.
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Heterogeneous fault rupture
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Dipping fault rupture
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FE-FD parallel connection
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FD 
       0        1        2         3
 
0   1045    0        0         0   
  
1      0       0        0         0    
  
2    251   679    560      45
  
3      0     458   1022      0
  
4      0       0        0         0
  
5    107    45    315    1459
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FE-FD verification SCEC 205, pure FD by Cui et al. (2010)
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FE-FD verification SCEC 10, pure FD by Andrews (1999)
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