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Fracture Processes and Problems
• Example Processes:
• Slip – seismic or silent?
• E. g., > 99.9% of HF deformation is “silent!

• Fracture transmissivity before and after slip 

• Example problems
• Interaction of hydrofractures and pre-existing natural fractures?
• Establishment of transmissive fracture networks

• Induced seismicity
• Hazard?  Diagnostic of where fractures slip? 

• Carbon sequestration
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Why now is a good time to advance fracture studies

• New experimental capabilities:
• Large volume apparatus
• High data rate acoustic emission monitoring
• Clever experimental design 

• New numerical capabilities
• Parallel software
• Parallel computers

• Well established collaborations
• Brian Evans Group – “high” P & T, large volume
• Herbert Einstein Group – high-resolution visualization
• Germán Prieto Group – Seismology in a pressure vessel
• Brad Hager Group – Dynamic earthquake source model computations
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Our approach
• Conduct low pressure HF tests in which the fracturing process can be observed both visually and with AE 

• Vary external stresses, flow rates/pressures, material

• Conduct high pressure HF tests in which the fracturing process can be observed with AE
• Vary external stresses, flow rates/pressures, material

• Analyze high bandwidth recordings of AE using modern seismological techniques
• Estimate magnitude, moment tensor, stress drop, seismic efficiency, . . .

• Numerical models of dynamic rupture and wave propagation in laboratory geometries
• Vary external stresses, flow rates/pressures, material
• Calculate magnitude, moment tensor, stress drop, seismic efficiency, . . .

• Joint interpretation of results
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Scaling is Crucial – Examine governing equations 
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3- Fracture criterion

Detournay,	
  2016

R fracture length
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After	
  Bunger	
  et	
  al.,	
  2005;	
  Detournay,	
  2016

φ?>1 φ?<1 (leakoff)

φ@<1 φ@>1 φ@<1 φ@>1

φ0<1 Toughness Viscosity Toughness Viscosity

φ0>1 Toughness Viscosity and Fluid lag Toughness Viscosity and Fluid lag

Dimensionless Time Constants
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𝐾"70𝐻?/0𝐸"viscosity Fluid lag Leak-off

𝛔o min. (lith.) prin. stress E’       Plane strain modulus
Qo fl. injection rate K’ modified mode I fracture toughness
H desired fracture length 𝐾"7 Fluid leak-off constant
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Fluid name: Silicone oil A B C D
Fluid Viscosity (P·s) 0.1 1 5 12.5

Injection rate (m3/sec) 3.6×10-06 4×10-8 7×10-9 3×10-9

Viscosity

Toughness

Fluid lag

No fluid lag

Experiments by Saied Mighani indicate AE number & magnitude correlate with fracture regime. Can lab 
experiments  and moment tensor analyses provide a better way to identify fracture regimes in the field?
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Research	
  Staff:	
  Yves	
  Bernabé,	
  Brian	
  Evans,	
  Uli Mok
Large volume, multi-physics 

platform 
Conventional triaxial mechanical

Samples 10 cm x 20 cm
σmeaneff 140 MPa (20 kpsi); 

Pore Pf 120 MPa (18.5 kpsi);
Axial load 400 MPa (1.1 Mpf)

Temp. 120°C (250°F)
Internal load and displacement

Simultaneous property meas.
Permeability, p- & s-wave velocity, 

mechanical 
Acoustic:16 sensor array. 250 MS/s 

cont. streaming
AE location, moment tensor anal.
Independent pore fluid pressure 

and chemistry

Axial receiver

Axial transmitter

AE pzt #5

Conventional	
  triaxial	
  test

AE	
  acq.&	
  anal. Loc.	
  mom.	
  ten.	
  
&	
  microstructure

Top: 
hanging wall

Bottom: 
foot wall

a)

b)

c)
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• Microstrain mapping in “ductile” rocks at reservoir conditions

(Also see work by Einsteins’ group, CEES)
• Harmonic flow measurements during deformation

• Investigating hydromechanical coupling
• Multi-physics measurements in new equipment

• Porosity and permeability changes during flow of single- and two-
phase fluids
• Acoustic velocity monitoring
• Fluid chemistry measurements

• Joint properties
• Rate of change of transport and mechanical properties

• State variable description of properties
• Incorporation into larger scale calculations and models
• Comparison with field-scale geophysical observations
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• How do properties of reactivated joints change with slip and 
loading?
• Deformation under varying normal loads?

• Elastic and inelastic
• Crystalline rocks vs. shales

• Relation of 𝜇friction and friction const. (dc) to
• roughness, total displacement, normal load, loading 

rate, T, and pore-fluids?
• Constraints of AE on fault mechanisms?

• Energy budget microseismics vs. slip?
• AE locations and source mechanisms? (moment 

tensor analysis)
• Effects on hydraulic conductivity

• Roughness, slip distance, ....
• Morphology of fluid flow through a rough surface? 

(4D seismic monitoring)

(Brian Evans, German Prieto, Chen Gu, Farrokh Sheibani) • Mechanical
• Force and load point
• Axial & radial LVDT (𝜇m accuracy)

• AE sensors: velocity & event measurements
• Number, location, spatial dimension, 

freq. distribution, magnitude 
distribution, moment tensor, spectral 
content

ax. dim.1 ax. dim.2 

Rad. dim.1

Rad. dim.2
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• Joint roughness
• Rock type
• Relation of loading direction to bedding
• Mean lithostatic stress vs. differential stress, pore 

fluid pressure
• HF versus compressive failure

• Correlate rupture processes with AE 
• Mag., moment tensor, and number
• Mag. distribution (b value)

• Correlate fracture mechanism
with transmissivity and joint stiffness

• Test methods of relating acoustic wave 
transmission to joint transmissivity
• (Pyrak-Nolte and others)

0 45
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Why is the hydraulic fracture 
perpendicular to the 

pre-existing fracture?  

• Value of stress at wellbore breakout: 
Uniaxial stress = 15.7 MPa, Confining 
Stress = 10 Mpa and Wellbore pressure 
= 60 MPa. 

• For Plexiglas, E = 3.3 GPa, and 
Poisson’s ratio = 0.37. 

• Static friction coefficient is around 0.3 
for the polished saw-cut surface in 
Plexiglas (pre-pressurization 
experiment). 
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For µ = 0.25, slip on the fracture from pressurizing borehole makes 𝜎yy more 

tensile above fracture, more compressive below, breaking axial symmetry
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Titanium
E	
  =	
  113	
  GPa

Titanium
E	
  =	
  113	
  GPa

Pre-­‐existing	
  fracture

Sample
E	
  =	
  20	
  GPa

Axial receiver

Axial transmitter

AE pzt #5


