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SUMMARY

We model P and S-wave mean square envelopes in 2-D ran-
dom media by solving the Radiative Transfer Theory (RTT)
equation using a Monte Carlo (MC) particle based approach.
Using a source frequency in the order of kilohertz, typical of
cross-well seismic sources, we find good agreement with finite
differences in both effective and forward scattering regimes.
We show that MC simulations is a much faster way of model-
ing scattering attenuation, compared to finite differences, and
therefore is a suitable tool to characterize the medium hetero-
geneities associated, for example, with highly fracture reser-
voirs.

INTRODUCTION

The propagation of seismic waves through heterogeneous me-
dia results in multiple scattering of P and S-waves. Contrar-
ily to intrinsic attenuation, scattering attenuation redistributes
the wave energy throughout the seismogram. Previous work
in seismology have shown that P and S-wave coda are the re-
sult of scattering attenuation (Aki and Chouet, 1975) and since
then different approaches have been proposed to model the P
and S-wave envelopes as a function of the medium scattering
properties.

A popular model used in global seismology to simulate seis-
mogram envelope is based on the Radiative Transfer Theory
(RTT) (Wu, 1985), which describes energy transport through a
scattering medium neglecting phase information. Initially de-
rived to describe scattering of light in the atmosphere (Chan-
drasekhar, 1950) , the RTT equation was later derived from the
elastic wave equation (Ryzhik et al., 1996). Analytical solu-
tions to the RTT equation exist for the case of isotropic scat-
tering in both acoustic (Zeng et al., 1991; Paasschens, 1997)
and elastic cases (Zeng, 1993). For the case of anisotropic
scattering, the RTT equation has been solved numerically us-
ing Monte Carlo (MC) simulations and the Born scattering co-
efficients (Przybilla et al., 2006; Przybilla and Korn, 2008).
Comparison with finite difference (FD) simulations for low
frequencies (2 Hz) has shown good agreement between MC
envelopes and FD from the P-wave onset to the later S-wave
coda (Wegler et al., 2006; Przybilla et al., 2006).

Previous works using Monte Carlo simulations to solve the
RTT equation have focused mostly in the strong forward scat-
tering regime aiming at investigating the scattering properties
of the crust (Przybilla et al., 2009; Gaebler et al., 2015) and up-
per mantle (Shearer and Earle, 2004) using regional and global
earthquakes, respectively. In this paper we show that solving
the RTT equation using Monte Carlo simulations is also an
effective tool to model P and S-wave envelopes using high fre-
quency waves and therefore can be used effectively to charac-
terize a medium heterogeneities associated, for example, with

fractured reservoirs in the context of exploration seismology.

We consider the context of cross-well seismic monitoring, with
typical frequencies in the order of kilohertz (Daley et al., 2007).
We use finite difference (FD) simulation to generate synthetic
seismograms in a randomly heterogeneous medium, with vary-
ing sizes of heterogeneities. We then generate mean square
envelopes (MS) using Monte Carlo simulations for the same
set of medium parameters. We find good agreement between
the two methods and show that MC simulations is much faster
than FD.

STATISTICAL MODELING OF SCATTERERS

In solving for the wavefield in a heterogeneous medium using
FD, we use a velocity model in which velocity perturbations
are distributed spatially according to a statistical model with
predefined auto-correlation function (ACF).

The wave velocity field V is considered to be the sum of a
mean velocity V0 and a perturbed velocity δV which depends
on the location x (Sato et al., 2012):

V (x) =V0 +δV (x) =V0[1+ξ (x)] (1)

where ξ (x) ≡ δV (x)/V0 is the fractional velocity fluctuation
that will be represented by a random function of coordinate x.
A sample ξ (x) of the enseble of random media {ξ} can be ob-
tained in space by Fourier transform where the amplitude spec-
trum is given by using

√
P(m), where P(m) is the power spec-

tral density function (PSDF). Different samples ξ (x) can be
obtained by randomizing the phase spectra (Sato et al., 2012).

There are many different types of PSDFs that are used to de-
scribe subsurface heterogeneites with a variety of scale sizes.
The fact that the earth’s materials have heterogeneities in all
scales favors the usage of PSDFs with self-affine properties
(Klimes, 2002; Sato et al., 2012). Here we will focus on a
PSDF given by a von Karman ACF, which has a power law de-
cay and therefore represents heterogeneities in a broad range
scales. In 2-D its PSDFs is given by (Przybilla et al., 2006):

P(m) =
4πΓ(κ +1)ε2a2

Γ(κ)(1+a2m2)κ+1 (2)

Where a is the correlation distance, ε is the fractional fluctu-
ation, m is the wavenumber, Γ is the gamma function and κ

is a parameter that controls the power law decay of the von
Karman PSDF. Using well logs from the German Continental
Deep Drilling project (KTB), Wu et al. (1994) found a power
law decay for the crust heterogeneities. Examples of other ap-
plications of the von Karman PSDF to describe geological fea-
tures can be found in Klimes (2002) and Przybilla et al. (2009).
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MODEL GEOMETRY

We are interested in characterizing the scattering properties of
a medium. We choose to design an experiment corresponding
to a cross-well seismic geometry, with source frequency equal
to 1000 Hz (Daley et al., 2007). The short wavelength gen-
erated by cross well seismic sources provides high resolution
images of the sampled media (Daley et al., 2007). Here we will
assume that the source used in cross-well seismic experiments
generates only P waves. Figure 1 shows the model geometry
where an explosive source is at the center of the model and re-
ceivers are located with a minimum offset of 50 m. The model
parameters are summarized in table 1. We then use both FD
and the RTT to model the mean square envelopes that result
from the propagation through the random velocity perturba-
tions as shown in figure 1.

Figure 1: Model geometry with source (blue star) and receiver
(cyan triangles) locations superimposed on a heterogeneous P-
wave velocity generated using a von Karman PSDF.

Modeling Parameters
Vp = 3500 (m/s) γ0 =

VP
VS

=
√

3 ν = 0.6518

λP = 3.5 m λS = 2.02 m f = 1000 Hz

offsets: 50 m, 60 m 70 m and 80 m

Table 1: Modeling parameters used to simulate P and S-wave
mean square envelopes. The source and receiver locations are
shown in figure 1. Here ν is the velocity density conversion
factor.

ENVELOPE MODELING USING MONTE CARLO SIM-
ULATIONS

The radiative transfer equation can be solved numerically us-
ing a Monte Carlo particle based aproach (Shearer and Earle,
2004; Przybilla et al., 2006; Przybilla and Korn, 2008). In
this approach millions of particles are sprayed from the source
and scattered through the heterogeneous medium according to
probabilities given by the Born scattering coefficients. There
are many advantages of this method: energy is conserved, sin-

gle and multiple scattering are naturally included and intrinsic
attenuation can be easily included for both P and S-waves.

Each particle taking off from the source will propagate through
the medium with background P and S-wave velocities, if the
particle is P or S, respectively, and scatter at a distance given
by an exponential distribution as:

sp =−lp lnγ ss =−ls lnγ (3)

With a uniformly distributed random number γ ∈ (0,1]. In
equation 3, sp, ss, lp and ls are the distance for a scattering
event to occur and the mean free paths for both P and S par-
ticles. The mean free paths are related to the total scattering
coefficients as:

lp = (g0
pp +g0

ps)
−1 ls = (g0

ss +g0
sp)
−1 (4)

Where g0
PP,g

0
PS,g

0
SP and g0

SS are the total scattering coefficients
for P and S waves given by averaging the single scattering co-
efficients (gPP,gPS,gSP,gSS ) over the unit circle. Expressions
for the scattering coefficients can be found in Przybilla et al.
(2006) for the 2-D case and in Sato et al. (2012) for the 3-D
case. All the scattering coefficients are given by similar ex-
pressions and can be written in the following simplified func-
tional form (Przybilla et al., 2009):

gi j =
ε2

a
F(aks) (5)

where i, j is P or S. The scattering coefficients are the prod-
uct of the parameter combination ε2/a and the functional F in
which the heterogeneity correlation length a and the S-wave
number ks = 2π/λs only occur as a product. The direction
dependence of scattering is constroled by the parameter com-
bination aks. If scattering occurs, then for aks � 1 waves are
scattered mainly in the backward direction and aks� 1 waves
are scattered mainly in the forward direction. For aks ∼ 1,
waves interact intensively with the medium and scattering is
strong because the wavelength is on the order of the correla-
tion length a of the medium. This regime is also known as
effective scattering regime.

In Monte Carlo simulations the particles travels a distance to
the next scatterer according to probabilities given by equation
3. Whe scattering occurs, the conversion between different
phases is a Markov process where each state represents either
P or S particles. The transition probability Π between state i
and j, representing P and S particles, respectively, is given by
(Przybilla et al., 2006):

Π(i to j) =
g0

ii

g0
ii +g0

i j
, Π(i to j) = 1−Π ( j to i) (6)

At every scattering point a random number is used to decide
weather phase conversion occurs or not. Figure 2 shows the
total scattering coefficients as a function of the control param-
eter aks. Phase conversion occurs mainly in the effective scat-
tering regime (aks ≈ 1). Here we are interested in modeling P
and S-wave envelopes for a cross-well seismic source, which
we assume generates only P waves. Therefore it is expected
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that away from the effective scattering regime, (e.g aks � 1)
there is almost no S-wave energy.

The scattering coefficients given in equation 5 are calculated
for each type of random medium (Sato et al., 2012) used to
estimate the angle that a particle will travel after scattering.
Figure 3 show examples of scattering directions for different
scattering regimes for a von Karman medium. When only P-
to-P conversions occurs, such as the case of strong forward
scattering regime (aks� 1), it is expected that scattering will
occur mainly in the -10 to 10 degree direction, for example.
For ak ∼ 3.1 there is a wider range of possible angles. The
scattering coefficients are converted to probabilities and then
compared with a random number in order to decide the new
scattering direction.

Figure 2: Total scattering coefficients as a function of control
parameter aks for a von Karman medium. P-to-S conversions
occur mainly in the effective scattering regime where aks ∼ 1.

lp ls

aks = 3.1 45 m 24 m

aks = 31 5.6 m 2 m

Table 2: Medium parameters used in the Monte Carlo sim-
ulations for two scattering regimes. aks = 3.1 and aks = 31
corresponds to a = 1 m and a = 10 m respectively. lp and ls
are the mean free paths for P and S-waves, respectively. For
the von Karman media it was used κ = 0.3.

During the particle propagation through the geometry in figure
1 we allow particles to scatter until a maximum time tmax =
0.06 s. For an S-wave particle following a straight path, this
corresponds to a distance d ≈ 120 m, therefore particles with
travel time larger than tmax are far from the receiver and do not
generate a recorded signal.

For each receiver located at distance r from the source, we
count the number of particles N(r, ti) that cross a circle of ra-
dius λP around the receiver in a small time step ∆t, where λp
is the P-wave wavelength. The energy density, which is pro-
portional to the mean square envelope (MS), is then given by:

E(r, ti) =
N(r, ti)
N0 A(r)

(7)

Where N0 is the total number of particles shot from the source,
in our case taken to be N0 = 106, and A(r) is the area of the

circle surrounding the receiver. Figure 4 shows examples of
mean square envelopes for a von Karman medium for differ-
ent offsets. Note the variation of the S-wave envelope ampli-
tude with offset and the convergence, at larger lapse times, to
a background value.

Figure 3: Normalized scattering coefficients as a function of
the scattering angle (eq. 6 and 8) for effective scattering (aks =
3.1) and forward scattering regime (aks = 31). A von Karman
PSDF with parameters given in tables 1 and 2 was used with
κ = 0.3.

ENVELOPE MODELING USING FINITE DIFFERENCES

Elastic FD synthetic seismograms were generated using the
2D CPU-based elastic wavefield modeling code ewefd2d omp
freely available through the Madagascar project (Fomel, 2016).
The solver uses a second-order temporal and fourth-order spa-
tial accuracy stentil. We performed twenty FD simulations
with different heterogeneous velocities having the same sta-
tistical properties. We used a grid size of dx = 0.025 m with a
time step of dt = 1×10−6 s, and domain size of 250 m x 250
m, resulting in 108 grid cells. For comparison with RTT MS
envelope, each FD 2 components trace is squared and summed.
The final FD MS envelope is obtained by stacking over all sim-
ulations corresponding to different random field realizations.

Figure 4: MS envelopes from MC simulations as a function
of source detector distances for a von Karman medium, where
aks ∼ 3.1 (left) and aks ∼ 31 (right). The offsets shown are:
50 m, 60 m, 70 m and 80 m.
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RESULTS

In figures 4 and 5 show we compare the MS envelopes obtained
from MC simulations and FD for both effective and forward
scattering regimes. In both cases there is a good overall match
between both methods for the P and S coda, although, there is
significant differences at the peak of the P-wave arrival. We
are currently investigating the causes of this mismatch, which
we hypothesize is related to the short distance between source
and receiver.

Figure 4 show a significant amount of S-wave energy arriving
in the effective scattering regime (aks� 1) that is not present
in the forward regime (aks ∼ 1), even when the source only
generates P-waves. This is the result of phase conversion on
the path between the source and receiver. From figure 2 we
note that in the effective scattering regime (aks ∼ 1) the scat-
tering coefficient g0

PS is much larger than g0
SP, meaning that

there is larger probabilities of P-to-S conversion than S-to-P.
Once P-to-S conversion occurs, it is less likely that S-to-P will
occur. The P-to-S conversion occurs near the source, since the
S-wave energy is concentrated at the S-wave arrival time.

Figure 5: Normalized MS envelopes as a function of the source
detector distance for a von Karman medium for aks = 3.1.

Apart from the balistic P-wave amplitude mismatch, the Monte
Carlo simulation reproduces well the coda decay observed in
the FD data. Further analysis is ongoing in order to determine
which cases would result in a larger mismatch in the coda de-
cay.

We measured the CPU time required to compute the MS enve-
lope for both methods as a function of the domain size (figure
7) and found that the MC simulations is much faster than the
FD, specially when aks ∼ 1 since in this case we have large
mean free paths (see table 2). Since each particle released from
the source is independent of each other, we expect to further
improve the MC simulation CPU time by distributing thou-
sands of particles in several cluster nodes. With a fast MS
envelope solver we expect to investigate in the future the sen-
sitivity and trade offs of the mean square envelope to variations

in the medium properties.

Figure 6: Same as figure 5 but for aks = 31.

Figure 7: Approximate CPU time required to generate mean
square envelopes for each scattering regime. The machine
specifications are: x86-64 processor, 20 CPUs, 16 GB mem-
ory. For the Monte Carlo simulations it were used 104 parti-
cles, where the domain size is given by Vstmax, where tmax =
0.06 is the maximum time that each particle is allowed to prop-
agate. The finite differences parameters are described in the
text. Note the difference in the CPU time scale.

CONCLUSIONS

We have shown that solving the radiative transfer equation us-
ing Monte Carlo simulations results in overall good agreement
with synthetic envelopes generated using finite differences, ex-
cept the peak amplitude of the onset P-wave. The MC simula-
tions is computationally much faster than FD and therefore can
be effectively used in investigating the inverse problem using,
for example, a simple grid search. In the future we expect to
use the MC method to characterize the random heterogeneities
associated, for example, with fracture reservoirs.
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