
List of Abbreviations 
CCD - Charge-Couple Device (image sensor) 

CFA - Color Filter Array 

CGD - Consumer Grade Digital (camera) 

CMOS - Complementary Metal-Oxide-Semiconductor (image sensor) 

RGB - Red-Green-Blue 

SGD - Scientific Grade Digital (camera) 

1. INTRODUCTION 

Experimental studies have greatly contributed to our 

understanding of the dependence of fracture permeability 

on various complex processes (e.g. fracture deformation, 

dissolution). Recently, universal scaling relationships 

between fracture stiffness and fluid flow have been 

proposed (Pyrak-Nolte and Nolte, 2016). Theoretical and 

numerical investigations have led to a number of models, 

for instance, for fracture deformation and closure (e.g. 

Kling et al., 2018), and corrections to the widely used 

Local Cubic Law (Brown, 1987). Yet, experimentation 

remains an essential part of fracture flow studies since it 

can validate the models, point out inconsistencies of the 

models, and reveal new physical aspects. Important 

challenges in experimental investigations of fracture flow 

are related to multiple processes occurring 

simultaneously, as well as specimen heterogeneity and 

test repeatability. 

Systematic investigations require controlled variation of 

the geometric- and mechanical properties of the fractured 

specimens. Certainly, numerical simulations can address 

the above-mentioned issues. However, the validity of 

such simulations depends on a series of assumptions that 

not always hold. The use of fracture replica and fracture 

analogs presents a great advantage here, it provides the 

possibility of efficient specimen replication, so one can 

conduct systematic experimental investigations while 

controlling the geometric and material properties. 

Furthermore, when such fracture -replicas and -analogs 

are fabricated using transparent materials, direct 

measurements of the fracture aperture field (Detwiler et 

al., 1999), flow (Nichol et al., 1999), and dissolution- 

(Detwiler, 2008) and transport- (Nowamooz et al., 2013; 

Lee et al., 2015) processes are also possible. The basics 

for such measurements rely on light transmission 

techniques (see Section 3), and in general, the 

experimental setup consists of (1) a diffuse light source, 

(2) a transparent fracture cell, and (3) a digital camera 

(Figure 1). The experimental procedures are as follows: at 

different times during the test, clear- or dyed-solutions are 

injected into the transparent fracture cell, and the 

transmitted light intensity is recorded by the camera. 

After image processing, these changes in the recorded 

light intensity can be related to flow velocities, variations 
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in the aperture, fluid saturations, and tracer 

concentrations. 

 

Fig. 1. Typical setup used in light transmission experiments. A 

digital camera records the light intensity transmitted through a 

transparent microfluidic cell. The light source must generate a 

uniform irradiance (hence the diffuser). A calibration target 

consisting of an object of known color is usually placed next to 

the cell to correct for white-balance and light-intensity 

fluctuations. 

In light transmission experiments, light intensity is 

traditionally recorded using scientific grade digital (SGD) 

cameras, usually being monochrome Charge-Coupled 

Devices (CCD) (e.g. Detwiler et al., 1999). Such systems 

are quite popular for experiments with an intense 

imaging- component: they are easy to use, and the output 

is a linear representation of the scene radiance. On the 

other hand, consumer grade digital (CGD) cameras are 

present in most research laboratories, mostly for imaging 

of experimental setups, specimens, and other non-

quantitative uses. However, CGD cameras do also have 

scientific-quantitative uses such as digital image 

correlation (Li and Einstein, 2017); and image processing 

of their sensor raw data enables one to use them as SGD 

cameras (Akkaynak et al., 2014; Sumner, 2014).  

In this paper, we outline a procedure to use raw data from 

CGD cameras for light intensity measurements, and 

emphasize why this is necessary (Section 2). Then, we 

introduce the Beer-Lambert law, and present a study in 

which we measured aperture fields in transparent fracture 

cells using a CGD (Section 3). Note that a comparison 

between SGD vs. CGD cameras is beyond the scope of 

the present paper. We simply provide a methodology to 

conduct fracture aperture measurements with a CGD 

camera in the case a SGD one is not available.  

1.1. Consumer Grade Digital (CGD) Cameras 

One can find consumer grade digital cameras (also known 

as commercial off-the-shelf digital cameras) in nearly 

every single research laboratory. They have attractive 

pricing, high resolution, are widely available, and easy to 

use. However, they are not optimally designed for 

scientific data quantification (Akkaynak et al., 2014). 

CGD cameras incorporate built-in image processing 

software that makes photographs look aesthetically 

pleasing to the human eye and introduce non-linearities 

and compression artifacts that hinder their use as 

scientific instruments. 

On the contrary, SGD cameras output intensity 

photographs (i.e. n x m x 1 arrays) that can be linearly 

related to the scene radiance, i.e. their output is a linear 

function of the recorded light intensity. Nevertheless, 

SGD tend to have lower resolution compared to CGD 

cameras, and are pricier: $4,000- $8,000 for SGD vs. 

$500- $1,500 for CGD (Spotimaging, 2019). It is 

therefore desirable to use CGD cameras for scientific data 

acquisition, particularly given the fact that their image 

sensors also produce linear outputs. However, access to 

this linear data requires specific image processing which 

will be detailed in this paper.  

Digital cameras convert light waves into electric signals 

through their image sensors, or imagers. The two main 

technologies are (1) semiconductor charge-couple 

devices (CCD), and (2) active pixel sensors in a 

complementary metal-oxide-semiconductor (CMOS). 

Discussing the difference between the two technologies is 

beyond the scope of the present paper, but major 

differences reside in signal noise, light sensitivity, and 

power consumption. Note that CCD sensors are used in 

the higher-end cameras. For the purpose of this paper it is 

sufficient to know that both sensor types consist of a 2D 

array of millions of tiny cells that output the value of the 

light intensity that they receive.  Each of these tiny cells 

is able to measure light intensity, with no color data. Such 

a sensor with no color filtering only outputs images in 

gray scale, also known as monochrome. 

 

Fig. 2. Digital cameras convert light intensity into electrical 

signals through image sensors. Color separation is usually 

achieved using color filter arrays (CFA), which are mosaics of 

tiny color filters. The most common CFA is the Bayer filter with 

arrangements consisting of one red-, one blue-, and two green- 

pixels (the higher concentration of green pixels compared to red 

or blue is to emulate the human eye, which is more sensitive to 

green shades than red or blue). Depending on the camera model 

the Bayer mosaic may present  ‘GRGB’, ‘BGGR’, ‘RGBG’ , or 

‘RGGB’ arrangements (the ‘RGGB’ arrangement is shown in 

the figure). 

Color, i.e. RGB (Red-Green-Blue), cameras work on the 

same principle as monochrome ones, but add one more 

step for color separation. The most common approach is 

called the Bayer filter mosaic, where each individual pixel 

is made sensitive to one color only (i.e. either red, green, 

or blue) using a color filter array (CFA) as illustrated in 



Figure 2. Note that each pixel in any RGB digital image 

contains information on all the three colors, with the two 

missing intensities interpolated from the neighbors.  

1.1.1 Image Acquisition with CGD Cameras 

For both monochrome- and color- cameras, the raw data 

from the image sensor appear as linear intensity images 

(i.e. n x m x 1 arrays). In the case of monochrome SGD 

cameras, the raw data are the file output, and ready to be 

used for quantitative analyses. On the other hand, in the 

case of (color) CGD cameras the raw data undergo a 

series of nonlinear transformations and compressions 

within the built-in software of the camera, resulting in a 

JPG file. Therefore, if one intends to use a CGD camera 

for scientific data acquisition, it is necessary to access the 

raw data in the form of a RAW file. 

RAW files contain the uncompressed information 

recorded by the sensor, along with meta-data generated at 

the time of the image capture (e.g. camera model, white 

balance, light sensitivity [i.e. ISO], shutter speed, etc.). 

Many CGD cameras allow one to save shots as RAW 

files, however they usually come in a proprietary format 

(e.g. Canon’s .CR2), which often has an obscure structure 

and is not easy to read. Nevertheless, there exist open raw 

image formats such as the Adobe’s Digital Negative 

(.DNG), to which many proprietary RAW formats can be 

converted. For further information about RAW files, see 

Sumner (2014). 

So, the first step in our workflow requires the acquisition 

of the RAW file. Usually, this can be done through the 

camera settings (prior to the shot), and/or through the 

camera controlling software. In our case, we use 

digiCamControlTM, an open-source camera control 

software that allows for real time viewing, among many 

other functions such as setting the exposure, ISO, 

focusing, white balance, RGB histogram analysis, time-

lapse, etc. 

2. DATA PROCESSING OF RAW IMAGES 

As just mentioned, proprietary RAW files are difficult to 

read and process. Some versions of WindowsTM can 

generate preview, even recent versions of MATLABTM 

programming language (Mathworks, Inc. Natick, 

Massachusetts) can import them. However, most of the 

times one will be opening the embedded JPG file into the 

RAW and not the raw data file itself. For this reason, we 

recommend to convert the RAW file (in our case .CR2) to 

.DNG, e.g. by using the free Adobe DNG ConverterTM. 

DNGs are open (non-proprietary) RAW formats that can 

be read and processed using third-party software. 

However, some transformations to the raw data are 

needed. The image processing detailed in this section is 

similar to the camera’s built-in software, but in a 

controllable (known) manner (Figure 3). 

 

Fig. 3. Flowchart of image processing from raw data acquisition 

(image sensor) to a screen-displayable RGB image. Usually, the 

whole process happens under-the-hood within the camera’s 

built-in software. Steps in parenthesis, ( ), are optional.   

In general, before an image is ready to be displayed on a 

screen, the raw data from the sensor need to be (0) 

cropped, (1) linearized, (2) demosaiced, (3) white-

balanced, (4) transformed to the expected color space, and 

(5) brightness- and contrast- enhanced  as described 

below (Figures 3 and 4).  In this section, we follow the 

steps detailed in Sumner’s (2014) guide. A similar 

approach is shown in Akkaynak et al. (2014), along with 

some interesting applications. Since the procedure is 

extensively detailed in Sumner (2014), we limit ourselves 

to a structured overview of the process, with comments 

regarding the importance of each step, and which steps are 

unnecessary depending on the intended usage. We wrote 

our implementation of Sumner’s (2014) guide into a 

single MATLABTM function that can be downloaded at 

https://www.mathworks.com/matlabcentral/fileexchange

/71420-dng-to-rgb-converter. 

 

Fig. 4. Example of image processing from raw data acquisition 

(image sensor) to a screen-displayable RGB image. The image 

shown is a microfluidic cell used in the calibration of light-

intensity vs. aperture gap (Figures 1 and 7). The different steps 

during image processing are: (a) Raw data from camera sensor, 

(b) Linear Bayer mosaic, (c) Linear Bayer mosaic + white-

balanced, (d) Linear RGB [device-specific color space], (e) 

Linear RGB [device-independent color space], (f) Nonlinear 

RGB [brightness- + gamma- correction]. 

https://www.mathworks.com/matlabcentral/fileexchange/71420-dng-to-rgb-converter
https://www.mathworks.com/matlabcentral/fileexchange/71420-dng-to-rgb-converter


2.1. Import Color Filter Array Image 

As noted before, the DNG file is mainly composed of two 

parts: (1) the intensity recorded by the image sensor 

(rawsensor), and (2) meta-data with important information 

(meta_data), some of which we will detail later (e.g. 

presence of unexposed pixels, exposure time, color 

space). For further information regarding image 

formation principles, please refer to Akkaynak et al. 

(2014). For the purpose of this paper it is sufficient to 

know that rawsensor is an intensity image (16bits, 

unsigned), which is a function of the source light 

(irradiance), the light reflected by the body (radiance), 

and the camera hardware (i.e. optics, spectral sensitivity 

of the Bayer filter and the sensor, and other electronics, 

e.g. Analog-Digital Converter). Therefore, two different 

cameras may output different rawsensor images from the 

same scene. Moreover, the same camera may output 

slightly different rawsensor from the same scene due to light 

source fluctuations, and/or sensor noise. 

Figure 4a shows rawsensor directly from the sensor, with an 

insert detail of the CFA. Note that the resolution of 

rawsensor (i.e. the size of the nxmx1 array) may be larger 

than expected since it may include unexposed pixels. The 

physical location (i.e. coordinates) of these unexposed 

pixels can be found in meta_data. Note that each pixel of 

rawsensor only contains information from one of the RGB 

channels (see Section 1.1). The two missing RGB values 

(channels) will be interpolated from the neighbors during 

the demosaicing (see Section 2.4).  

2.2. Linearization 

Although the output from the camera imager is linear, 

some cameras may apply a nonlinear transformation 

before generating the rawsensor file (Sumner, 2014). If so, 

a linearization table can be found in meta_data so it can 

be reversed (if there is no such table, the image is linear). 

Prior to white balancing and demosaicing there is one 

more step. We previously noted that rawsensor is a 16-bit 

unsigned intensity image (i.e. intensity values range from 

0 to 216-1). However, the imager of our camera may have 

a lower bit resolution (in our case it is 14bit). Therefore, 

the expected black level may not be 0, and similarly, the 

expected pixel saturation may not be 65,536 (i.e. 216 - 1).  

Using the black- and saturation- levels specified in 

meta_data, we perform an affine transformation to 

rawsensor to normalize it to the range [0, 1] as follows (see 

also ‘RGB Equalization’ in Akkaynak et al. (2014)); 

𝐵𝑎𝑦𝑒𝑟𝑙𝑖𝑛𝑒𝑎𝑟 =
𝑟𝑎𝑤𝑠𝑒𝑛𝑠𝑜𝑟−𝑏𝑙𝑎𝑐𝑘𝑙𝑒𝑣𝑒𝑙

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑒𝑣𝑒𝑙−𝑏𝑙𝑎𝑐𝑘𝑙𝑒𝑣𝑒𝑙
                  (1) 

Note that due to sensor noise, there may be values beyond 

this range, and therefore, such values need to be truncated 

to 0 and 1. The resulting array is a linear Bayer mosaic, 

i.e. the Bayerlinear (Figure 4b). 

 

2.3. White Balancing 

We previously noted that the color recorded by a camera 

sensor is a combination of the irradiance (illuminating 

light) and the radiance (reflected light from the body). As 

a result, fluctuations in the light source will affect the 

camera readings. While the human eye can discount small 

changes in the ambient light through chromatic 

adaptation, cameras cannot (Akkaynak et al., 2014). 

Therefore, one needs to compensate for the color of the 

irradiance, i.e. we need to white-balance the image. In 

other words, we need to compensate the relative RGB 

values of each pixel, so a white pixel looks white. 

Fortunately, the same correction (i.e. same factors) is used 

in every pixel.  

In order to do this, we need to either (i) use a calibration 

target, or (ii) measure the ambient light spectrum 

(Akkaynak et al., 2014). A calibration target is basically a 

reference with a known color, i.e. something with known 

RGB values. Once we know the true RGB values of a 

pixel we can adjust the measured RGB values until they 

match each other. 

There are different algorithms one can use, including the 

chromatic adaptation transform or the RGB equalization 

(both described in Akkaynak et al., 2014). Sumner (2014), 

on the other hand, reduces the problem to simply finding 

the relative scaling of the red- and blue- channels to the 

green one (WBmultipliers). For example, if the RGB values 

of a pixel is truly white, then the two WBmultipliers should 

equalize the RGB values (Figure 5). 

 

Fig. 5. White-balance example. The table contains the RGB 

values of the group of four pixels before and (after) the white-

balance. If one knows the pixel ‘D’ is white (i.e. RGB = [1,1,1]), 

the WBmultipliers are such that [0.5, 1.0, 0.6] is transformed to [1.0, 

1.0, 1.0]. 

The trick here is to find these WBmultipliers. One option 

would be to use a calibration target where these can be 

measured. Another, is to use the WBmultipliers values present 

in the meta_data. However, note that these are not the true 

WBmultipliers but an approximation from the camera or the 

user settings. 

The output is a linear Bayer mosaic that is white-

balanced, i.e. Bayerbalanced (Figure 4c). But note that it may 

be no longer normalized to [0, 1]. WBmultipliers may have 



caused the maximum value of Bayerbalanced to be beyond 

1. We have the option of either (i) scaling back everything 

to [0, 1], or (ii) truncating the values beyond 1. In other 

words, we can choose between the (i) loss of an absolute 

scale, or (ii) information loss. We implement the latter 

one. 

2.4. Demosaicing 

So far, the image map is a Bayer mosaic image which is 

an intensity image, i.e. a n x m x 1 array. The demosaicing 

algorithm will generate a full RGB image which is a n x 

m x 3 array. For each pixel, the algorithm will interpolate 

the two missing RGB values. 

There are different demosaicing algorithms. Some of 

them, e.g. the bilinear interpolation, determine the 

missing values for a given RGB channel from the known 

values of that channel. Others, like the gradient-corrected 

bilinear interpolated approach (Malvar et al., 2004) 

employ additional information from other color channels 

(Figure 6). The latter usually yield better results compared 

to bilinear, but may introduce artefacts, especially when 

dealing with dyes that are transparent to certain colors. 

Moreover, the relative order between the white balancing- 

and demosaicing- algorithms may affect the result since 

the correction for changes in intensity gradients uses other 

known colors, which may have been affected by the 

WBmultipliers. 

 

Fig. 6. Demosaicing principles for two different algorithms. For 

a given RGB channel the bilinear approach only uses known 

values for this channel. On the other hand, the gradient-

corrected bilinear approach also uses information from other 

color channels. We implement the latter. 

In addition, recall that the recorded RGB values are 

device-specific. Different cameras use different CFAs, 

being sensitive to different regions of the light spectrum. 

Therefore, at the end of the demosaicing step, one will 

have generated a linear RGB image in the camera-specific 

color space, the cRGBlinear image (Figure 4d). This is 

enough if one intends to use the camera as a scientific 

instrument because, like any other sensor, this output 

from the camera can be calibrated against a reference. 

And for this reason, cRGBlinear images will be used in our 

analysis. 

2.5. Color Space Conversion and Brightness and 

Gamma Correction 

The linear transformation required to convert an image 

from a device-specific to a device-independent color 

space is called color space transformation (cRGBlinear → 

sRGBlinear). This may be important if work repeatability is 

required. Details for this transformation can be found in 

Akkaynak et al. (2014) and Sumner (2014). The resulting 

photograph is a linear RGB image that is a device-

independent version of the raw camera output, i.e. the 

sRGBlinear image (Figure 4e), for which colors do not 

depend on a specific CFA filter combination. Note that 

after this operation it is possible that some RGB fall 

beyond the [0, 1] range, with the consequent information 

loss (see Section 3.3.3). 

Nevertheless, the resulting image might not be yet 

aesthetically pleasant. Usually there is one last step 

involving brightness- and gamma- (i.e. nonlinear 

transformation) corrections. These are highly subjective 

and the resulting image, the sRGBnonlinear, must not be used 

for scientific purposes since it will be highly nonlinear. 

As the reader may have noted not all the steps detailed in 

this section are necessary to be able to measure light 

intensity with a CGD camera. For instance, accessing the 

rawsensor data plus demosaicing is enough for sensor 

calibration if one only needs one of the RGB channels. 

However, we provided the full workflow to illustrate why 

image processing of the raw data is necessary, which are 

the options, and why is not a good idea to use the JPG or 

TIFF files since these are sRGBnonlinear images, i.e. they 

use a nonlinear scale which is not appropriate for data 

calculations. 

3. FRACTURE APERTURE MEASUREMENTS 

USING LIGHT TRANSMISSION TECHNIQUES 

In this section we present the theoretical background for 

aperture measurements using light transmission 

techniques (the Beer-Lambert law). We also describe a 

simple setup using a LED panel, a microfluid cell, and a 

CGD camera. Then we apply the image processing 

workflow described in Section 2 to demonstrate how 

fracture aperture measurements can be made using a CGD 

camera. 

3.1. Theory: Beer-Lambert Law 

As first proposed by Glass et al. (1991), aperture fields in 

microfluidic cells can be measured using light absorption 

theory, which is described by the Beer-Lambert Law 

(Detwiler et al., 2000). This empirical relationship relates 

monochrome-light absorption to material properties of the 

light-transmitting media (e.g. liquid, gas). For the case of 

solute dissolved in a liquid, the transmitted light intensity 

measured at a given point (x, y) is given by: 

𝐼𝐶(𝑥, 𝑦) = 𝐼0(𝑥, 𝑦)10−𝜀𝐶(𝑥,𝑦)ℎ(𝑥,𝑦) = 𝐼0(𝑥, 𝑦)10−𝐴(𝑥,𝑦)   (2) 

where IC and I0 are light intensities measured with- and 

without the solute present in the solution, respectively 

(Figures 8a,b). The product 𝜀𝐶ℎ is the absorbance (A), 

with 𝜀 and C being the dye -absorptivity (a solute 

property) and -concentration; and h is the solution 

thickness, i.e. in our case the local fracture aperture. Note 



that I0 is not the irradiance (incident monochrome-light 

intensity) but the radiance from the cell filled with clear 

solution (C = 0), i.e. I0 already accounts for the 

absorbance of the solvent and the transparent cell. 

Equation 2 describes the attenuation of light intensity as 

it travels through a solution as a function of the dye 

concentration and the distance travelled. Once the dye 

absorptivity is known (e.g. Norwamooz et al., 2013), the 

aperture field can be determined by measuring the 

absorbance (i.e. 𝐴(𝑥, 𝑦) = 𝑙𝑜𝑔10[𝐼0(𝑥, 𝑦) 𝐼𝐶(𝑥, 𝑦)⁄ ]) at a 

given dye concentration. Moreover, Glass et al. (1991) 

showed that the aperture field can also be determined 

without measuring 𝜀 but the mean aperture of the fracture, 
〈ℎ〉, instead (Detwiler et al. 1999): 

ℎ(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)〈ℎ〉 〈𝐴〉⁄                          (3) 

Finally, recall that the Beer-Lambert law relies on the 

assumption of monochromatic light irradiance. In the case 

of polychromatic light source, Equation 2 is only 

approximate and non-linearities may arise since dye 

absorptivity is a function of the wavelength. Such non-

linearities are found to increase with increasing dye 

concentration (Detwiler et al., 2000). 

3.2. Methods 

The experimental setup was shown in Figure 1 and 

comprises (1) a diffuse light source, (2) a transparent 

fracture cell, and (3) a digital camera. The diffused light 

source consists of an LED panel (AutographTM 930 LX 

LightPadTM) connected to a stable DC power supply 

(KeysightTM E3630A) in order to minimize voltage and 

current fluctuations. 

The transparent cell is made of two 1/2”-thick acrylic 

plates screwed to each other. Five different height profiles 

were CNC-machined onto one of the plates as shown in 

Figure 7. Each one of these profiles consists of a single 

channel with either constant- (AA’ and EE’) or variable- 

(BB’, CC’ and DD’) depth. For the sake of simplicity in 

this study, only the variable depth of the central profile 

will be used to determine the light intensity vs. depth 

calibration. 

We used a CGD camera (CanonTM EOS 6D) with a 14bit 

CMOS trichromatic sensor, and a 100 mm f/2.8 macro 

lens. The camera was computer-operated using 

DigiCamControlTM software. We took pictures with lens 

aperture of f/32, ISO-100, and exposure time equal to 1.3 

s. The smallest lens aperture available (i.e. f/32) was 

selected in order to maximize the depth of field, and 

therefore minimize possible errors due to misalignments 

in the perpendicularity between the camera and the 

transparent cell. Similarly, the smallest ISO available (i.e. 

ISO-100) was chosen to minimize noise (i.e. graininess). 

Finally, after setting both lens aperture and ISO, the 

exposure time was selected to maximize the usable 

dynamic range of the camera (see Figure 9). 

 

Fig. 7. Transparent microfluidic cell for light intensity vs. 

height calibration. Five different stepped profiles were CNC-

machined onto the bottom plate of the cell. Details for each 

profile (i.e. step -height and -length, maximum depth, and total 

length) are shown in the five cross sections (AA’, BB’, CC’, 

DD’ and EE’).  

The solute is a blue-powder (Alfa AesarTM Brilliant Blue 

G, ultrapure) dissolved in distilled water. This dye, also 

known as Coomassie Brilliant Blue G-250, is light-

absorbing (red- and green- wavelengths, hence its blue 

color) and highly soluble in water (50 mg/mL). It 

produces dark blue solutions even at low concentrations 

(< 1mg/mL), which is advantageous for imaging small 

fracture apertures. Recall that CGD cameras are more 

sensitive to green shades compared to red or blue (Figure 

2). Therefore, a dye which does absorb wavelengths 

within the green range is preferred.  

In this study, we measured fracture apertures using six 

different solute concentrations (0, 1/32, 1/16, 1/8, 1/4 and 

1/2 g/L). Prior the injection of each dye solution, the cell 

was flushed with air to avoid mixing with the previous 

solution. We then injected the new target concentration 

solution to achieve a homogeneous target concentration. 

Finally, ten pictures were taken at each concentration, and 

then averaged to minimize noise. A group of white pixels 

were used as a calibration target (Figure 8) for light 

intensity fluctuations as discussed in Section 3.3.1. 

3.3. Results and Discussion 

3.3.1 Image Processing and White Balance 

In the following analysis, only the cRGBlinear images were 

considered. These were developed using the WBmultipliers, 

and the linear transformation factors embedded in the 

meta_data of the DNG file. Nevertheless, a subsequent 

analysis of a group of white pixels indicated that LED 

panel fluctuations resulted in variations of light intensity 

up to 8% among the images taken at the same exposure 



time.  These fluctuations were corrected using the first 

image as a reference.  

3.3.2 Trichromatic Analysis 

As noted in Section 1.1, a major difference between CGD- 

and monochrome SGD- cameras is the ability of the 

former to capture trichromatic (i.e. RGB) images. 

Notwithstanding that raw RGB images require more 

image processing, trichromatic images may have some 

advantages. First, they provide filtering into three 

different color channels (i.e. RGB) due to the CFA in the 

imager. Some studies using monochrome cameras (e.g. 

Detwiler et al., 1999) actually use a monochrome filter 

before the camera objective in order to approximate the 

monochrome-light requirement of the Beer-Lambert Law 

 

Fig. 8. cRGBlinear: Calibration cell filled with (a) clear- and 

(b) dyed- solutions. (c-e) RGB components of image (b). Lens 

aperture f/32, ISO-100, Shutter speed 1.3 s, Dye concentration 

= 0.25 g/L. Note the calibration target at the bottom right of the 

cell. 

Figure 8 compares RGB images of the calibration cell 

filled with (a) clear- and (b) dyed- solutions (i.e. I0 and 

IC). Then, the I0 RGB image is separated into R-, G-, and 

B- channels. Since the dye is blue, the B channel will be 

high, in terms of intensity, while the others (R and G) will 

be low. Recall that when one sees an object of a specific 

color it is because it reflects that specific range of 

wavelengths, absorbing the others.  

Moreover, recall that Figure 8 is in the camera-specific 

color space (due to the camera’s specific CFA). The 

relative intensity among RGB channels may be different 

if one considers another color space, e.g. the device-

independent color space. However, one must be careful 

when performing linear transformations from the device-

specific to device-independent color spaces (see Section 

2.5), as some RGB values may fall beyond the [0, 1] range 

with the consequent information loss. 

By preliminary observation of Figure 8 one may notice 

that some RGB channels contain more information than 

others (e.g. height steps are more obvious in Figure 8c 

than Figure 8e, which is almost saturated). Figure 9 shows 

the light intensity along the central profile (CC’ in Figure 

7) of the calibration cell under clear water- (I0) and dye- 

(IC) conditions for the three RGB channels. Note that 

although one may see the steps in all the three channels, 

what is informative is the I0/IC ratio. Due to low contrast, 

the blue channel is much noisier than the other two, and 

therefore, only R- and G- channels will be considered in 

the rest of the analysis. Moreover, Figures 9(a, b) compare 

the light intensity profiles measured at two different 

shutter speeds (0.6 vs. 1.3 s). This illustrates how the 

shutter speed maximizes the usable dynamic range of the 

camera. In this study, the shutter speed was adjusted based 

on the R- and G- channels (i.e. the ones considered in the 

following analysis). 

 

Fig. 9. cRGBlinear. Light intensity along the central profile (CC’ 

in Figure 7) of the calibration cell under clear- (solid lines) and 

dyed- (dashed lines) solution conditions. Each RGB channel is 

plotted separately. Note the R- and G- channels show high I0/IC 

contrast (i.e. large relative differences between I0 and IC lines). 

Lens aperture f/32, ISO-100, Dye concentration = 0.25 g/L. 

Shutter speed equal to (a) 0.6 s and (b) 1.3 s. Note how by 

adjusting the shutter speed one can maximize the usable 

dynamic range of the camera. 

3.3.3 Calibration Curve and Effect of Dye 

Concentration 

After light source fluctuations have been corrected (see 

Section 3.3.1), the light intensity profiles, such as the ones 

shown in Figure 9b, can be used to generate light intensity 

vs. fracture aperture calibration curves (Figure 10b). To 

generate these curves, we first normalize the light 

intensities at any given concentration by the light intensity 

at zero concentration (i.e. I0/IC) as shown in Figure 10a. 



Then, the individual normalized intensities (i.e. steps in 

Figure 10a) are related to their corresponding height-

aperture gap, and used to determine the I0/IC vs. h 

calibration curves (Figure 10b).  

 

Fig. 10. (a) Normalized light intensity along the central profile 

of the calibration cell (see profile CC’ in Figure 7). The x-axis 

corresponds to the distance along the stepped profiles, with 

each step corresponding to a specific height. Red- and green- 

curves correspond to the red- and green- channels, respectively. 

(b) I0/IC vs. height calibration curve for the red- and green- 

channels. Dye concentration = 0.25 g/L. Note that we use light 

intensities from the green- and red- channels of the cRGBlinear 

images only. 

These steps can be repeated for each investigated dye 

concentration (i.e. 1/32, 1/16, 1/8, 1/4 and 1/2 g/L). 

Figures 11a and 11d show the I0/IC vs. h calibration curves 

at a range of concentrations, for the red- and green- 

channels, respectively.  Specifically, we note that the I0/Ic 

vs. height curves plot almost linearly on the green channel 

(Figure 11d) while I0/Ic vs. height curves derived from the 

red channel (Figure 11a) seem to transition from linear- 

to quadratic- to cubic- trends. This different behavior 

between red- and green- channels may be a result of the 

different absorption properties at different wavelengths 

(Detwiler at al., 1999). 

As discussed in Section 3.1, the Beer-Lambert law 

predicts a semilogarithmic relation between normalized 

light intensity (I0/Ic) and height. Figures 11b and 11e are 

plotted in this manner, and we can see that the log10[I0/IC] 

(i.e. the Absorbance) vs. height relation is indeed linear at 

low concentrations. However, we observe that at 

concentrations above 1/8 g/L, the linear relation no longer 

holds. Nonlinearity at high concentrations has been 

previously reported (e.g. Detwiler et al. 1999), and is 

usually attributed to the non-fulfilment of the 

monochromatic light source requirement (see Section 

3.1). In our case, curves in Figures 11(b, e) show a 

transition from linear to quadratic, suggesting that the 

observed non-linear absorbance could be accounted for 

by a function of the following form: 

𝑙𝑜𝑔10 [
𝐼0(𝑥,𝑦)

𝐼𝑐(𝑥,𝑦)
] = 𝑓{𝐶(𝑥, 𝑦)} ℎ(𝑥, 𝑦)2 + 𝑔{𝐶(𝑥, 𝑦)} ℎ(𝑥, 𝑦)    (4) 

where f{C(x,y)} and are g{C(x,y)} functions of 

concentration. Figures 11(c ,d) show examples of data 

fitting using Equation 4 with f ={a C(x,y)2 + b C(x,y)} and 

g={d C(x,y)}, where a, b, and d are fitting parameters. 

Note that no determination of the dye absorptivity was 

attempted (𝜀 is embedded in the fitting parameters a, b, 

d).

 

Fig. 11. Normalized light intensities as a function of aperture height and dye concentration. I0/IC vs. height curves for the (a) red- 

and (d) green- channels. Absorbance (log10[I0/IC]) vs. height curves for the (b) red- and (e) green- channels. Absorbance vs. height 

vs. concentration curves for the (c) red- and (f) green- channels. Data from cRGBlinear images. 



The goodness of fit reveals that the chosen model is able 

to fit our laboratory data, with R2 equal to 0.999 and 0.996 

for the red- and green- channels, respectively. We have 

confidence that the nonlinearities shown in Figures 11(b, 

e) are not artefacts from the demosaicing algorithm or the 

white balance corrections. To demonstrate this, we 

repeated the analysis above with the Bayerlinear images and 

we obtained the same results. Finally, we repeated the 

analysis once more with sRGBlinear images, and these 

resulted in higher nonlinearities and information loss (e.g. 

some pixels in the Red channel fall below [0,1]). 

Therefore, sRGBlinear images are not recommended for 

this type of light intensity measurements 

4. CONCLUSIONS AND COMMENTS 

In this paper we outline a procedure to use raw data from 

CGD cameras for light intensity measurements. We 

illustrate how different stages during image processing 

enhance- and hinder the use of CGD cameras as scientific 

instruments. 

A study where the microfluidic cell aperture was 

measured as a function of light intensity was also 

presented. Both the setup and theoretical background 

were discussed, showing the advantages and drawbacks 

of trichromatic CGD cameras. Experimental results show 

that the direct use of raw- (i.e. Bayerlinear images) and low-

processed data (i.e. cRGBlinear images) is adequate and 

prevents the introduction of artefacts from further image 

processing.  

For the specific -equipment and -experimental conditions 

used in this study (i.e. the dye and camera model with a 

specific CFA sensitivity), we obtained non-linear 

absorbance vs. height curves at high dye concentrations 

(differently from what is predicted by the Beer-Lambert 

law). This may be due to the nonlinear absorbance caused 

by our polychromatic light source. However, such curves 

were basic first- and second- order polynomials, and are 

simple to implement in the laboratory.  

Finally, recall that previous studies have exclusively used 

monochrome cameras for aperture field measurements, 

and such instruments have proved to be very effective.  

However, we have shown that aperture field 

determinations are also possible with CGD cameras. In 

addition, there might be some other advantages of using a 

trichromatic camera. For instance, although not 

investigated in the present paper, it may be possible that 

different color dyes can be selected such they match the 

filters of the CFA. In such a case, individual RGB 

channels are sensitive to an individual dye only. This may 

be of interest when imaging mixing processes or 

multiphase flow. Moreover, note that a direct comparison 

between SGD vs. CGD cameras was not attempted. We 

leave that as an open question for future studies. 
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