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SUMMARY

We study the problem of the moment tensor inversion
of a double-couple microseismic source from observed
S/P amplitude ratios. The emphasis of this work is on
uncertainty quantification that includes the effect of the
uncertain event location. We use a Bayesian approach to
quantify the uncertainty of the fault plane solution. The
posterior distribution is effectively calculated by sam-
pling from the posterior distribution of the event loca-
tion, and performing a moment-tensor inversion using
individual samples. The uncertainty in the reconstructed
moment tensor depends on the receiver geometry, signal
noise, and the true moment tensor. After a suitable trans-
formation of the input data, the problem can be reduced
to a classical least-squares estimation problem.

INTRODUCTION

The problems of microseismic event location and mo-
ment tensor inversion remains a challenging problem.
These problems are particularly important in hydraulic
fracture monitoring. Data used for inversion are often
incomplete, erroneous, or noisy, and the inversion result
therefore may carry significant uncertainty. The location
problem in the presence of signal noise and uncertain ve-
locity has received considerable attention (Eisner et al.,
2009; Maxwell, 2014; Poliannikov et al., 2014). Here
we primarily focus on the problem of moment tensor in-
version. The goal is therefore to invert for the moment
tensor of a microseismic event and quantify the associ-
ated uncertainty. The uncertainty in the reconstructed
moment tensor depends on the true moment tensor, ac-
quisition geometry, signal noise, velocity model, atten-
uation, etc. In this paper, we will focus on the effect
of signal noise and location uncertainty on the moment
tensor reconstruction. We will construct the fault plane
solution using S/P (or P/S) amplitude ratios. Employ-
ing S/P ratios, as opposed to direct amplitudes, is more
convenient because the ratios do not explicitly depend
on the seismic moment, and they appear more stable in
the presence of unknown velocity perturbations and/or
attenuation. Moment tensor inversion using observed
S/P amplitude ratios fitting has been tried with success
under deterministic assumptions (Sarkar, 2008; Li et al.,
2011a,b; Eyre and van der Baan, 2015). When signal
is contaminated by noise, and other model parameters

are uncertain, S/P ratios become random variables, i.e.,
they carry uncertainty. Fitting predicted S/P ratios to
observed S/P ratios should be done using a well-suited
metric. We use Geary-Hinkley transform to map S/P ra-
tios to nearly-Gaussian quantities. The problem is then
optimally solved by using least-squares fitting on these
transformed quantities. We illustrate the proposed algo-
rithm using numerical tests with a borehole- and surface-
monitoring geometries.

PROBLEM SETUP

Consider a single source, located at xs in the subsurface,
emitting elastic waves. We assume for simplicity of pre-
sentation that the source is double-couple with a strike φ ,
dip δ , and rake λ (Rutledge and Phillips, 2003; Li et al.,
2011a,b). An array of receivers located at xr, j, j = 1, . . . ,Nr,
records direct arrivals from the source. We consider two
popular monitoring setups shown in Figure 1: a surface
array and three borehole arrays (Gu and Toksöz, 2014).
The problem is to locate the event and find its moment

(a) (b)

Figure 1: Experiment geometries with a single source
and three borehole arrays or a surface array of re-

ceivers.

tensor with uncertainty quantification for both the lo-
cation and moment tensor. In this work, we will as-
sume that the uncertainties in the location and the mo-
ment tensor are due to signal noise, whereas the veloc-
ity models, VP and VS, are homogeneous and assumed
known. We will seek to estimate the location of the event
by constructing a spatial posterior probability distribu-
tion, p(xs) that describes possible locations of the event
given uncertainty in the input parameters of the inver-
sion. We will also construct a fault plane solution with
uncertainty by calculating a posterior probability distri-
bution, p(φ ,δ ,λ ), in the space of strike φ , dip δ , and
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Uncertainty in fault plane solutions

rake λ . The moment tensor uncertainty will include the
direct effect of the signal noise on the recorded ampli-
tudes, as well as the effect of the uncertainty in the event
location, assumed to be derived in a previous analysis.
In order to construct these probability distribution we
will use the classical Bayesian inversion approach.

BAYESIAN INVERSION

Bayes’ rule provides the posterior distribution p(m | d)
of the unknown model m given observed data d:

p(m | d) =
p(d | m) p(m)

p(d)
∝ p(d | m), (1)

where p(d | m) is a likelihood function (forward or mea-
surement model), p(m) is a prior distribution of the model
parameters, and p(d) is the normalizing constant, which
is an unconditional probability of data. The proportion-
ality sign in Equation 1 assumes an uninformed (flat)
prior.

In this problem the unknown model parameters are the
location xs, and the angles φ , δ , and λ . The continuous
3C seismic data have the form:

un j(t) =
∑

p,q

Mpq ⋆Gnp,q(xr, j ,xs, t), (2)

where M ≡ M(φ ,δ ,λ ) is the moment tensor, and G is
the Green’s function.

We assume that the continuous traces are processed and
a set of discrete waveform attributes is extracted. Specif-
ically, we denote as T̂P, j, T̂S, j the estimated arrival times
of P and S waves at the jth receiver, and ÂP, j, ÂS, j —
the observed amplitudes of P and S wave at the jth re-
ceiver. We will assume that all errors, including errors in
the estimated arrival times and amplitudes, are mutually
uncorrelated.

LOCATING THE EVENT

To locate the event, we follow Poliannikov et al. (2014).
We assume that arrival times, T̂=

{

T̂α , j |α ∈ {P,S}, j ∈
{1, . . . ,Nr}

}

, can be modeled as follows:

T̂α , j = T̊ +T (xr, j,xs |Vα)+σα , j nα , j, (3)

where T̊ is the unknown source origin time, T (xr, j,xs |Vα)
is the predicted travel time from xs to xr, j in the veloc-
ity Vα , {nα , j} are independent random variables with
N(0,1) distribution, and σα , j are noise variances, as-
sumed known.

Then the event location posterior has the form:

p(xs | T̂) ∝ exp

(

B2

2A
+C

)

, (4)

where

A =
∑

α , j

1

σ2
α , j

, (5)

B =
∑

α , j

T̂α , j −T (xr, j,xs |Vα)

σ2
α , j

, (6)

C = −
1

2

∑

α , j

(

T̂α , j −T (xr, j,xs |Vα)
)2

σ2
α , j

. (7)

Equation 4 accounts for the unknown origin time. In
this form, it also assumes an uninformed prior on xs.
Readers are referred to Poliannikov et al. (2014) for for-
mulas with the prior included and more information on
uncertainty quantification for event location. Equation 4
provides the full 3D posterior, as well as 2D and 1D
marginal distributions, as shown in Figures 2 and 3.

(a)

(b)

Figure 2: Location uncertainty estimate from borehole
receivers

ESTIMATING THE FAULT PLANE SOLUTION

We now consider the problem of estimating the moment
tensor of this event by taking the location uncertainty
calculated above into account. We will use the same
Bayesian approach to solve this problem. For any lo-
cation xs and any fault plane solution M ≡ (φ ,δ ,α),
we can model the amplitudes of the P and S arrival,
Aα(xr, j ,xs), using Equation 2. The observed amplitudes
are noisy versions of the predicted amplitudes

Âα , j = Aα(xr, j,xs)+ ζα , j να , j. (8)
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Uncertainty in fault plane solutions

(a)

(b)

Figure 3: Location uncertainty estimate from surface

receivers

Because the angles (φ ,δ ,λ ) define a double-couple mo-
ment tensor up to a multiplicative seismic moment, we
remove this ambiguity, as is customary, by considering
amplitude ratios {ÂS, j/ÂP, j} (or {ÂP, j/ÂS, j}) estimated
at each receiver j These ratios contain information about
the moment tensor. In particular, in the homogeneous
case, we will have

AS(xr, j,xs)

AP(xr, j,xs)
=

(

VP

VS

)3 RS(ψ j,θ j | M,xs)

RP(ψ j,θ j | M,xs)
, (9)

where ψ j,θ j are the azimuth and elevation of the jth
receiver relative to an assumed source location xs, and
RP and RS are radiation patterns of P and S wave corre-
sponding to the fault plane solution M. When the sig-
nals are perturbed by additive noise, the observed am-
plitudes can be modeled as Gaussian perturbations of
the predicted amplitudes. Note that the ratio of the two
Gaussian-distributed noisy amplitudes is not Gaussian.
This is not an impediment for Bayesian inversion. How-
ever, it is often convenient to work with Gaussian data
because the estimation problem will have familiar so-
lutions. In what follows, we convert our problem to a
Gaussian one without any loss of generality. Denote the
amplitude ratios as r̂A =

{

ÂS, j/ÂP, j | j ∈ {1, . . . ,Nr}
}

.
The general form for the posterior of the moment tensor
is obtained by

p(M | T̂, r̂A) =

ˆ

p(M,xs | T̂, r̂A)dxs

=

ˆ

p(M | xs, T̂, r̂A) p(xs | T̂, r̂A)dxs

≈

ˆ

p(M | xs, r̂A) p(xs | T̂)dxs

= Exs [p(M | xs, r̂A)]
(10)

The ≈ sign is to underscore an additional assumption we
make that amplitudes do not have much additional infor-
mation about the event location beyond what is already

provided by the travel times.

We have developed a numerical algorithm for evaluating
the posterior of M based on approximating the expecta-
tion ending Equation 10 with a sample mean. That is,
we sample possible event locations, {xs,i}

Ns
i=1, from the

posterior distribution p(xs | T̂). For each sample loca-
tion, we can perform a separate inversion; then average
the results:

p(M | T̂, r̂A)≈
1

Ns

Ns
∑

i=1

p(M | xs,i, r̂A). (11)

Geary-Hinkley transform of amplitude ratios

The S/P amplitude ratio is the ratio of two non-zero-
mean Gaussian random variables. While we could work
with such ratios directly, it is more convenient to trans-
form them into Gaussian random variables with a suit-
able transform. Note that we do not assume that the
ratios have Gaussian distributions. Instead, we apply
a transform that ensures that the transformed quantities
have a Gaussian distribution. Specifically, suppose that
(ξ1,ξ2)∼N((µ1,µ2),Σ) are jointly Gaussian with known
means and the covariance matrix. Let r = ξ2/ξ1 be their
ratio. Define

ρ = P(r) =
µ2r− µ1

√

Σ22r2 −2Σ12r+Σ11

. (12)

It has been shown that ρ is approximately N(0,1), pro-
vided ξ1 is away from zero with a very large probability.
Equation 12 is called Geary-Hinkley transform We illus-
trate numerically how the transform works in Figure 4.

Maximum-likelihood and posterior estimates

We compute maximum-likelihood and posterior estima-
tors of the moment tensor using least squares in the P-
domain. The ML estimate is obtained by minimizing the
least-squares error between the observed transformed ra-
tios, P(r̂A), and the predicted transformed ratios, P(rA),
where rA is obtained from Equation 9. The results are
shown in Figure 5. The estimators visually appear very
good but they do not provide any quantitative informa-
tion about possible uncertainty. In order to show the un-
certainty in the reconstructed fault plane solutions, we
calculate the Bayesian posteriors and show them in Fig-
ure 6. We observe that the surface network appears to
give better results, which is to expected because much
of the energy produced by a dip-slip event radiates verti-
cally. The posterior in our examples also does not appear
to be Gaussian. Ad hoc estimates of the possible range of
uncertainty in the absence of a careful calculation may
therefore be wholly inadequate. Failure to fully capture
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Uncertainty in fault plane solutions

Figure 4: The ratio, ξ2/ξ1, of two Gaussian random

variables, ξ1 and ξ2, is not Gaussian. It becomes nearly

Gaussian after a Geary-Hinckley transform. Different
choices of distributions are coded by color.

this uncertainty may lead to the propagation of errors to
next possible stages of analysis, e.g., estimation of the
stress state in the reservoir.

(a)

(b)

Figure 5: True moment tensor (left), maximum likeli-

hood estimators obtained from (a) the boreholes or (b)
the surface (middle), and the difference between the true

and estimated moment tensors (right).

CONCLUSIONS

We presented a Bayesian approach to the problem of
moment tensor inversion in the presence of signal noise
and event location uncertainty. The velocity model was
assumed known but the approach can be extended to an
uncertain velocity model. The posterior distribution of
the angles in the fault plane solution depends on a true
moment tensor, geometry of the receiver network, noise
strength, and other factors. Results of this type of anal-
ysis can be useful in further applications such as stress
estimation or acquisition design.

(a)

(b)

Figure 6: Moment tensor confidence regions obtained
from data recorded (a) in the borehole and (b) at the

surface
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